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Treatment of KRAS-Mutant Non-Small Cell Lung Cancer
The End of the Beginning for Targeted Therapies
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The development of biomarker-driven targeted therapy has
resulted in substantial benefits for patients with non-small cell
lung cancer (NSCLC) with epidermal growth factor receptor
(EGFR) mutations, and rear-
& rangements involving the
anaplastic lymphoma kinase
(ALK) gene or the ROSI gene.
For patients with EGFR-mutant NSCLC EGFR tyrosine kinase
inhibitors (eg, gefitinib, erlotinib, and afatinib) have a supe-
rior objective response rate and progression-free survival
compared with chemotherapy in the first-line setting.® For
patients who have disease progression on EGFR tyrosine
kinase inhibitor and with NSCLC with an EGFR T790M muta-
tion osimertinib has demonstrated a superior response rate
and progression-free survival compared with chemotherapy
in the second-line setting.* For patients with ALK rearrange-
ments ALK tyrosine kinase inhibitors (eg, crizotinib, ceritinib)
have a superior response rate and progression-free survival
compared with chemotherapy in the first-line setting, and for
patients who experience disease progression, ceritinib and
alectinib have demonstrated clinically relevant response
rates and progression-free survival.>® For patients with ROSI
rearrangements, targeted therapy, is associated with a higher
response rate and longer progression-free survival than has
been observed with chemotherapy. These molecular altera-
tions are more common in NSCLC with adenocarcinoma his-
tology and in the minority of patients with a light smoking or
never smoking history. The success of these targeted thera-
pies in molecularly defined subsets of NSCLC made the
development of targeted therapies and identification of pre-
dictive biomarkers a focus of thoracic oncology research.
Routine molecular testing is now the standard of care for
patients with NSCLC with adenocarcinoma histology.!%!!

The most common oncogenic mutation detected in pa-
tients with NSCLC is KRAS, which is found in 25% to 30% of
lung adenocarcinomas, and associated with tobacco use.'?12
Patients in this molecular subgroup do not have a targeted
therapy available to them. A prior phase 2 trial in this popu-
lation (involving 87 patients) that compared docetaxel alone
or with selumetinib, a potent inhibitor of mitogen-activated
protein kinase kinase 1 (MEK1) and MEK2, reported promis-
ing results.! This trial had a compelling preclinical ration-
ale, because MEK signaling is downstream from KRAS, and
selumetinib demonstrated activity in KRAS-mutant NSCLC
xenograft models.

However, these promising preclinical and phase 2 results
did not translate into an improvement in progression-free sur-
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vival or overall survival in the SELECT-1 study—the phase 3 mul-
ticenter, randomized trial reported in this issue of the JAMA
by Janne et al.'” In this study of 510 patients (mean age, 61.4
years; women, 41%), 251 received selumetinib + docetaxel and
254 received placebo + docetaxel. Median progression-free sur-
vival and overall survival were not significantly different
in the selumetinib + docetaxel group compared with the
placebo + docetaxel group (median progression-free sur-
vival: 3.9 months for the selumetinib + docetaxel group vs 2.8
months for the placebo + docetaxel group; hazard ratio [HR],
0.93 [95% CI, 0.77-1.12]; P = .44; median overall survival:
8.7 months for the selumetinib + docetaxel group vs 7.9 months
for the placebo + docetaxel group; HR, 1.05 [95% CI, 0.85-
1.30]; P = .64). The objective response rate in the selu-
metinib + docetaxel group was 20.1% vs 13.7% in the pla-
cebo + docetaxel group (odds ratio, 1.61 [95% CI, 1.00-2.62];
P =.05) The oncology community will be left seeking an
explanation for these nonsignificant trial results and wonder-
ing what next investigational path should be pursued in
this population.

One possibility is that clinical benefit may only occur in
a subset of tumors that exhibits a favorable genetic or sig-
naling environment. In SELECT-1, possible differences in
response and outcome were investigated for the various
codon-specific KRAS mutations, as these may influence
downstream pathways and influence the efficacy of tar-
geted therapies.'®!” A retrospective analysis of the prior
phase 2 trial revealed a trend toward superior outcome in
these KRAS G12C or KRAS G12V mutant subtypes.'® How-
ever, in the current study by Jidnne et al, although KRAS
G12C or KRAS G12V were associated with a higher response
rate to selumetinib + docetaxel compared with docetaxel
alone, the progression-free survival was similar. A post hoc
subgroup analysis of 28 patients with KRAS Q61 found a
nonsignificant improvement in progression-free survival
among those receiving selumetinib + docetaxel compared
with docetaxel alone. In pancreatic adenocarcinoma, KRAS
Q61 mutations have been associated with improved out-
comes and decreased ERK phosphorylation compared with
other KRAS mutations suggesting a biological explanation
for this observation worth pursuing further.!®

Heterogeneity due to the presence of other mutations
or the relative activity of various signaling pathways may
also influence response to MEK inhibition. Concurrent loss
of LKBI (also known as STK1I), a tumor suppressor gene,
is detected in approximately 30% of KRAS-mutant NSCLC
and the presence of concurrent mutations may influence
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biology and drug response phenotype.2°22 In human
NSCLC-derived cell lines, LKBI loss directly induces sensi-
tivity to MEK inhibition in vitro and in xenograft models.??
However, contrasting results were observed with a geneti-
cally engineered mouse model, which showed resistance to
selumetinib + docetaxel treatment in NSCLC tumors result-
ing from mutated Kras and Lkbl, in comparison with tumors
with Kras mutations alone or with concurrent p53 loss.?*
The differences in these results may reflect differences in
the models or the method of defining LKBI loss.

In some contexts resistance to in vitro MEK inhibition
may be due to AKT-mediated attenuation of apoptosis
through phosphorylation of effectors such as FOXO3 and
BIM; thus, there is preclinical rationale to investigate
these pathways as determinants of clinical response.?*:2°
To identify novel response modifiers, CRISPR-Cas9 method-
ology has been used to screen the phenotypic effects of
hundreds of genes simultaneously, demonstrating that
loss of KEAPI induced resistance to MEK and other targeted
inhibitors.?® Numerous preclinical studies have character-
ized biomarkers including gene expression “signatures”
correlated with in vitro susceptibility to MEK inhibition
as well as KRAS dependency.??-23-27-31 The biological sig-
nificance of these signatures is not always clear, but
some may reflect increased activity of RAS/RAF/MEK signal-
ing, whereas others are associated with LKBI loss or an
epithelial-mesenchymal transition.??-2” Correlative analysis
of biospecimens from responders and nonresponders in the
SELECT-1 trial could help elucidate patient subsets that
will benefit from MEK inhibition or to test predictors of
clinical response.

Another consideration is that MEK inhibition may be a
viable strategy in this tumor subset but other drug candi-
dates may be more effective than selumetinib. Various MEK
inhibitors exhibit differences in target binding site and effects
on feedback mechanisms. MEK inhibition by selumetinib is
thought to result in a RAF-dependent increase in MEK phos-
phorylation that may partially mitigate its effect. Certain
other inhibitors, including trametinib and GDC-0623, disrupt
this feedback loop by preventing MEK phosphorylation at
serine 212 and may prevent this effect.? In preclinical mod-
els, these distinct modes of inhibition produce differential
effects on BRAF- vs KRAS-driven cancers, with feedback pre-
vention proving more effective in KRAS-mutant tumors.>3
Although selumetinib demonstrated little suggestion of ben-
efit in SELECT-1, it may be premature to conclude that other
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compounds will be ineffective given differences in their
inhibitory mechanism.

Alternatively, combination of MEK inhibition with other
targeted therapies may have more synergy than was ob-
served with docetaxel. Rational drug combinations with MEK
inhibitors and targeted inhibitors of resistance pathways such
as AKT, PIK3CA, and mTOR could be pursued. Combining in-
hibitors that target different components of the same path-
way has been clinically effective in treating BRAF-mutant
NSCLC and melanoma, with the combination of MEK and BRAF
inhibitors resulting in superior outcomes to single agent tar-
geted theapy.3#° Additionally, inhibitors that bind directly to
the mutant cysteine residue on KRAS G12C (the most com-
mon KRAS mutation in NSCLC) and do not bind to wild-type
protein have shown promising preclinical activity.36-3”

The approach of using molecular testing and treating
with a corresponding targeted therapy has ushered advances
in the treatment of NSCLC as well as other cancers. Molecular
testing has helped identify the patients most and least likely
to benefit from therapy and accelerated the speed of drug de-
velopment. However, progress appears to be slowing. This is
in part because many of the remaining molecular alterations
susceptible to targeted therapies have lower prevalence, which
makes identification and performing trials challenging. The re-
search community has encountered the practical limitations
related to the ever-expanding breath of tumor testing re-
quired, and technical issues related to molecular testing meth-
ods. Some of the multitargeted tyrosine kinase inhibitors have
been limited due to off-target toxicities. Among the most daunt-
ing challenges is the development of acquired resistance to tar-
geted therapy, which has unmasked the issues of intratumor
and intertumor heterogeneity.

The current state does not represent the beginning of
the end but the end of the beginning for targeted thera-
pies. Molecular testing is rapidly evolving and circulating
tumor DNA testing will facilitate tumor testing and may allow
for serial monitoring and use of surrogate end points for drug
development. The next generation of targeted therapies will
likely focus on the primary oncogenic molecular event and
the acquired resistance mechanisms, and will be more potent
and specific for the oncogenic driver. This will ideally
improve efficacy and reduce off-target toxicities.

The development of a targeted therapy is critical to the fu-
ture management of patients with KRAS-mutant NSCLC and
may provide a path forward for other solid tumor malignan-
cies that harbor KRAS mutations.
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